Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 63(6): 3047-3056, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38285530

RESUMEN

In this study, a novel method for producing different alkali metal hydrides (NaH, KH, RbH, and CsH) from their corresponding metal hydroxides (NaOH, KOH, RbOH, and CsOH) is presented. For the production of NaH from NaOH, a variety of metallic reducing agents (Mg, Al, Si, CaH2, Cr, Mn, and Sr) were investigated. The reactions took place in an autoclave reactor with paraffin oil at 250 °C and 14 bar of H2 pressure. Splitting the process into two steps (metal formation and hydrogenation) simplified the separation and purification for the produced metal hydride. Moreover, the study explores the potential for this method of NaH production to be used for NaBH4 production and regeneration for hydrogen export applications. This approach offers an alternative, cost-effective method for producing NaH.

2.
Chemphyschem ; 25(5): e202300794, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38165137

RESUMEN

Hydrogen storage by cryoadsorption on porous materials has the advantages of low material cost, safety, fast kinetics, and high cyclic stability. The further development of this technology requires reliable data on the H2 uptake of the adsorbents, however, even for activated carbons the values between different laboratories show sometimes large discrepancies. So far no reference material for hydrogen cryoadsorption is available. The metal-organic framework ZIF-8 is an ideal material possessing high thermal, chemical, and mechanical stability that reduces degradation during handling and activation. Here, we distributed ZIF-8 pellets synthesized by extrusion to 9 laboratories equipped with 15 different experimental setups including gravimetric and volumetric analyzers. The gravimetric H2 uptake of the pellets was measured at 77 K and up to 100 bar showing a high reproducibility between the different laboratories, with a small relative standard deviation of 3-4 % between pressures of 10-100 bar. The effect of operating variables like the amount of sample or analysis temperature was evaluated, remarking the calibration of devices and other correction procedures as the most significant deviation sources. Overall, the reproducible hydrogen cryoadsorption measurements indicate the robustness of the ZIF-8 pellets, which we want to propose as a reference material.

3.
Phys Chem Chem Phys ; 25(45): 31249-31256, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37955205

RESUMEN

Metal substituted dodecaborate anions can be coupled with alkali metal cations to have great potential as solid-state ion conductors for battery applications. A tin atom can replace a B-H unit within an unsubstituted dodecaborate cage to produce a stable, polar divalent anion. The chemical and structural change in forming a stannaborate results in a modified crystal structure of respective group 1 metal salts, and as a result, improves the material's ion conductivity. Li2B11H11Sn shows high ion conductivity of ∼8 mS cm-1 at 130 °C, similar to the state-of-the-art LiCB11H12 at these temperatures, however, obtaining high ion conductivity at room temperature is not possible with pristine alkali metal stannaborates.

4.
Phys Chem Chem Phys ; 25(10): 7268-7277, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36810792

RESUMEN

Renewable energy requires cost effective and reliable storage to compete with fossil fuels. This study introduces a new reactive carbonate composite (RCC) where Fe2O3 is used to thermodynamically destabilise BaCO3 and reduce its decomposition temperature from 1400 °C to 850 °C, which is more suitable for thermal energy storage applications. Fe2O3 is consumed on heating to form BaFe12O19, which is a stable Fe source for promoting reversible CO2 reactions. Two reversible reaction steps were observed that corresponded to, first, the reaction between ß-BaCO3 and BaFe12O19, and second, between γ-BaCO3 and BaFe12O19. The thermodynamic parameters were determined to be ΔH = 199 ± 6 kJ mol-1 of CO2, ΔS = 180 ± 6 J K-1 mol-1 of CO2 and ΔH = 212 ± 6 kJ mol-1 of CO2, ΔS = 185 ± 7 J K-1 mol-1 of CO2, respectively, for the two reactions. Due to the low-cost and high gravimetric and volumetric energy density, the RCC is demonstrated to be a promising candidate for next generation thermal energy storage.

5.
Dalton Trans ; 51(36): 13848-13857, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36039870

RESUMEN

Solid-state sodium batteries have attracted great attention owing to their improved safety, high energy density, large abundance and low cost of sodium compared to the current Li-ion batteries. Sodium-boranes have been studied as potential solid-state electrolytes and the search for new materials is necessary for future battery applications. Here, a facile and cost-effective solution-based synthesis of Na2B11H13 and Na11(B11H14)3(B11H13)4 is demonstrated. Na2B11H13 presents an ionic conductivity in the order of 10-7 S cm-1 at 30 °C, but undergoes an order-disorder phase transition and reaches 10-3 S cm-1 at 100 °C, close to that of liquids and the solid-state electrolyte Na-ß-Al2O3. The formation of a mixed-anion solid-solution, Na11(B11H14)3(B11H13)4, partially stabilises the high temperature structural polymorph observed for Na2B11H13 at room temperature and it exhibits Na+ conductivity higher than its constituents (4.7 × 10-5 S cm-1 at 30 °C). Na2B11H13 and Na11(B11H14)3(B11H13)4 exhibit an oxidative stability limit of 2.1 V vs. Na+/Na.

6.
Phys Chem Chem Phys ; 22(44): 25780-25788, 2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33150339

RESUMEN

CaH2 has 20 times the energy density of molten salts and was patented in 2010 as a potential solar thermal energy storage material. Unfortunately, its high operating temperature (>1000 °C) and corrosivity at that temperature make it challenging to use as a thermal energy storage (TES) material in concentrating solar power (CSP) plants. To overcome these practical limitations, here we propose the thermodynamic destabilization of CaH2 with Zn metal. It is a unique approach that reduces the decomposition temperature of pure CaH2 (1100 °C at 1 bar of H2 pressure) to 597 °C at 1 bar of H2 pressure. Its new decomposition temperature is closer to the required target temperature range for TES materials used in proposed third-generation high-temperature CSP plants. A three-step dehydrogenation reaction between CaH2 and Zn (1 : 3 molar ratio) was identified from mass spectrometry, temperature-programmed desorption and in situ X-ray diffraction studies. Three reaction products, CaZn13, CaZn11 and CaZn5, were confirmed from in situ X-ray diffraction studies at 190 °C, 390 °C and 590 °C, respectively. The experimental enthalpy and entropy of the second hydrogen release reaction were determined by pressure composition isotherm measurements, conducted between 565 and 614 °C, as ΔHdes = 131 ± 4 kJ mol-1 H2 and ΔSdes = 151 ± 4 J K-1 mol-1 H2. Hydrogen cycling studies of CaZn11 at 580 °C showed sufficient cycling capacity with no significant sintering occurring during heating, as confirmed by scanning electron microscopy, demonstrating its great potential as a TES material for CSP applications. Finally, a cost comparison study of known destabilized CaH2 systems was carried out to assess the commercial potential.

7.
Phys Chem Chem Phys ; 22(8): 4617-4625, 2020 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-32051979

RESUMEN

The thermal conductivity, thermal diffusivity and heat capacity of materials are all vital properties in the determination of the efficiency of a thermal system. However, the thermal transport properties of heat storage materials are not consistent across previous studies, and are strongly dependent on the sample composition and measurement method. A comprehensive analysis of thermal transport properties using a consistent preparation and measurement method is lacking. This study aims to provide the foundation for a detailed insight into thermochemical heat storage material properties with consistent measurement methods. The thermal transport properties of pelletised metal hydrides, carbonates and oxides were measured using the transient plane source method to provide the thermal conductivity, thermal diffusivity and heat capacity. This information is valuable in the development of energy storage and chemical processing systems that are highly dependent on the thermal conductivity of materials.

8.
Phys Chem Chem Phys ; 20(4): 2274-2283, 2018 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-29303173

RESUMEN

Magnesium hydride (MgH2) is a hydrogen storage material that operates at temperatures above 300 °C. Unfortunately, magnesium sintering occurs above 420 °C, inhibiting its application as a thermal energy storage material. In this study, the substitution of fluorine for hydrogen in MgH2 to form a range of Mg(HxF1-x)2 (x = 1, 0.95, 0.85, 0.70, 0.50, 0) composites has been utilised to thermodynamically stabilise the material, so it can be used as a thermochemical energy storage material that can replace molten salts in concentrating solar thermal plants. These materials have been studied by in situ synchrotron X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, temperature-programmed-desorption mass spectrometry and Pressure-Composition-Isothermal (PCI) analysis. Thermal analysis has determined that the thermal stability of Mg-H-F solid solutions increases proportionally with fluorine content, with Mg(H0.85F0.15)2 having a maximum rate of H2 desorption at 434 °C, with a practical hydrogen capacity of 4.6 ± 0.2 wt% H2 (theoretical 5.4 wt% H2). An extremely stable Mg(H0.43F0.57)2 phase is formed upon the decomposition of each Mg-H-F composition of which the remaining H2 is not released until above 505 °C. PCI measurements of Mg(H0.85F0.15)2 have determined the enthalpy (ΔHdes) to be 73.6 ± 0.2 kJ mol-1 H2 and entropy (ΔSdes) to be 131.2 ± 0.2 J K-1 mol-1 H2, which is slightly lower than MgH2 with ΔHdes of 74.06 kJ mol-1 H2 and ΔSdes = 133.4 J K-1 mol-1 H2. Cycling studies of Mg(H0.85F0.15)2 over six absorption/desorption cycles between 425 and 480 °C show an increased usable cycling temperature of ∼80 °C compared to bulk MgH2, increasing the thermal operating temperatures for technological applications.

9.
Phys Chem Chem Phys ; 18(35): 24387-95, 2016 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-27533740

RESUMEN

Rare earth (RE) metal borohydrides are receiving immense consideration as possible hydrogen storage materials and solid-state Li-ion conductors. In this study, halide free Er(BH4)3 and Pr(BH4)3 have been successfully synthesized for the first time by the combination of mechanochemical milling and/or wet chemistry. Rietveld refinement of Er(BH4)3 confirmed the formation of two different Er(BH4)3 polymorphs: α-Er(BH4)3 with space group Pa3[combining macron], a = 10.76796(5) Å, and ß-Er(BH4)3 in Pm3[combining macron]m with a = 5.4664(1) Å. A variety of Pr(BH4)3 phases were found after extraction with diethyl ether: α-Pr(BH4)3 in Pa3[combining macron] with a = 11.2465(1) Å, ß-Pr(BH4)3 in Pm3[combining macron]m with a = 5.716(2) Å and LiPr(BH4)3Cl in I4[combining macron]3m, a = 11.5468(3) Å. Almost phase pure α-Pr(BH4)3 in Pa3[combining macron] with a = 11.2473(2) Å was also synthesized. The thermal decomposition of Er(BH4)3 and Pr(BH4)3 proceeded without the formation of crystalline products. Rehydrogenation, as such, was not successful. However, addition of LiH promoted the rehydrogenation of RE hydride phases and LiBH4 from the decomposed RE(BH4)3 samples.

10.
Phys Chem Chem Phys ; 17(12): 8276-82, 2015 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-25732233

RESUMEN

Complex transition metal hydrides have potential technological application as hydrogen storage materials, smart windows and sensors. Recent exploration of these materials has revealed that the incorporation of anionic hydrogen into these systems expands the potential number of viable complexes, while varying the countercation allows for optimisation of their thermodynamic stability. In this study, the optimised synthesis of Na2Mg2TH8 (T = Fe, Ru) has been achieved and their thermal decomposition properties studied by ex situ Powder X-ray Diffraction, Gas Chromatography and Pressure-Composition Isotherm measurements. The temperature and pathway of decomposition of these isostructural compounds differs considerably, with Na2Mg2FeH8 proceeding via NaMgH3 in a three-step process, while Na2Mg2RuH8 decomposes via Mg2RuH4 in a two-step process. The first desorption maxima of Na2Mg2FeH8 occurs at ca. 400 °C, while Na2Mg2RuH8 has its first maxima at 420 °C. The enthalpy and entropy of desorption for Na2Mg2TH8 (T = Fe, Ru) has been established by PCI measurements, with the ΔHdes for Na2Mg2FeH8 being 94.5 kJ mol(-1) H2 and 125 kJ mol(-1) H2 for Na2Mg2RuH8.

11.
Dalton Trans ; 42(19): 6953-64, 2013 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-23508223

RESUMEN

The AlH3 adducts of TMEDA (Me2NCH2CH2NMe2), DIOX (O(CH2CH2)2O), TEA (Et3N), BDMA (PhNMe2), and TMPDA (Me2NCH2CH2CH2NMe2) have each been characterised by single-crystal X-ray diffraction at low temperature, by (1)H, (14)N and (27)Al NMR and FT-Raman and FT-IR spectroscopy, and by DFT calculations and elemental analysis. Hence, AlH3·TMEDA and AlH3·DIOX are both shown to adopt a polymeric structure, with the bidentate ligand bridging two Al centres, each of which adopts a trigonal bipyramidal (TBP) arrangement with equatorial hydride moieties. The 1 : 2 adduct AlH3·2BDMA is monomeric but the geometry at the Al centre resembles closely that of the polymeric TMEDA and DIOX complexes. AlH3·TEA alone adopts a monomeric structure in which the Al centre is tetrahedrally coordinated by three hydride and one amine ligand. The Al-L bond distance of 2.0240(17) Å for AlH3·TEA is the shortest of all the complexes in this study, and AlH3·TEA also possesses the shortest Al-H bonds. AlH3·DIOX has the shortest Al-L bond distance of the polymeric species (2.107(14) Å) on account of the higher electronegativity of the oxygen donor. The structure of AlH3·TMEDA was determined at low temperature (monoclinic space group P2(1)/c), and salient features are compared to the previous room temperature study, for which a highly disordered orthorhombic space group (P2(1)2(1)2(1)) was reported. The polymeric structures appear to be stabilised by a number of intermolecular interactions and unconventional hydrogen bonds; these are most pronounced for AlH3·DIOX, whose chains are connected by highly directional C-H···H-Al bonding with an H···H distance of 2.32(6) Å.

12.
Dalton Trans ; 42(19): 6965-78, 2013 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-23508235

RESUMEN

The structures adopted by a range of complexes AlH3·nL, (n = 1 or 2), have been explored in detail to identify the factors that determine the value of n, and whether a monomeric or dimeric arrangement is preferred for the 1 : 1 complexes. Single-crystal X-ray diffraction, vibrational and NMR spectroscopies, and thermal analysis data have been collected, DFT calculations have been performed for AlH3·nL species, and pK(a) values have been collated for a series of amine and phosphine ligands L. The pK(a) of the ligand L exerts an important influence on the type of complex formed: as the basicity of L increases, a monomeric structure is favoured over a dimeric arrangement. Dimeric amine complexes form if pK(a) < 9.76, while monomeric complexes are preferred when pK(a) > 9.99. The steric requirements of L also influence the structural preference: bulky ligands with large cone angles (>163°) tend to favour formation of monomers, while smaller cone angles (<125°) encourage the formation of dimeric or 1 : 2 adducts. The steric bulk of the ligand appears to be more important for phosphine complexes, with smaller phosphines being unable to stabilise the complex at ambient temperatures even through dimerisation. Raman spectroscopy and DFT calculations have been particularly helpful in elucidating the stoichiometric preferences of complexes that have been contentious; these include AlH3·NMe2Et, AlH3·NMe3 and AlH3·nEt2O.

13.
Phys Chem Chem Phys ; 15(17): 6179-81, 2013 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-23519072

RESUMEN

The direct synthesis of NaAlH4 has been studied, for the first time, by in situ (27)Al and (23)Na wide-line NMR spectroscopy using high pressure NMR apparatus. Na3AlH6 formation is observed within two minutes of hydrogen addition, while NaAlH4 is detected after a total of four minutes. This indicates the formation of the hexahydride does not proceed to completion before the formation of the tetrahydride ensues.


Asunto(s)
Compuestos de Aluminio/síntesis química , Compuestos de Sodio/síntesis química , Aluminio/química , Compuestos de Aluminio/química , Espectroscopía de Resonancia Magnética , Presión , Sodio/química , Compuestos de Sodio/química
14.
J Am Chem Soc ; 130(12): 4105-13, 2008 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-18314990

RESUMEN

The synthesis, photophysical, and anion-binding properties of a series of di-, tri-, and tetrapodal anion-binding hosts based on aminopyridinium units with pyrenyl reporter groups are described. The ditopic mesitylene-derived calix[4]arene-based host 4 binds strongly to dicarboxylates, particularly malonate, in a 2:1 anion:host ratio but is essentially nonemissive in the presence of all anions except chloride because of intramolecular quenching by the pyridinium units. Addition of chloride results in a conformational change, giving an initial increase in emission assigned to intramolecular excimer formation. Further chloride addition also results in an increase in the intensity of the pyrenyl monomer emission as chloride binding reduces the acceptor ability of the pyridinium groups. This behavior is not exhibited by control compounds 5 and 6, which lack the ditopic geometry and calixarene spacer unit; however, tripodal 6 forms 1:2 anion:host complexes with a range of anions.

15.
Chem Commun (Camb) ; (2): 156-8, 2006 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-16372090

RESUMEN

Two types of calix[4]arene derived hosts for anions with, respectively, 1,3-alternate and cone conformations have been prepared; the 1,3-alternate system binds dicarboxylate anions in a ditopic manner while the cone compounds are deprotonated by carboxylates.


Asunto(s)
Calixarenos/química , Ácidos Dicarboxílicos/química , Fenoles/química , Aniones/química , Cristalografía por Rayos X , Modelos Moleculares , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA